Machine Learning with EViews

Online 2 days (16th October 2020 - 17th October 2020) EViews Intermediate, Introductory
Delivered by: Malvina Marchese
Machine Learning, Regression analysis

Overview

Machine learning is a relatively new approach to data analytics, which places itself in the intersection between statistics, computer science, and artificial intelligence. Its primary objective is that of turning information into knowledge and value by “letting the data speak”. Machine learning limits prior assumptions on data structure, and relies on a model-free philosophy supporting algorithm development, computational procedures and analytical solutions. This course is a primer to our "Machine Learning Techniques in EViews short-course.

The latest edition of EViews offers various packages to perform machine learning. After the course, participants are expected to have an improved understanding of EViews' potential to perform some of the most used machine learning techniques, becoming able to master research tasks, specifically model selection techniques.

Agenda

Day 1

Session 1 - Introductory Session

  • Machine Learning: definition, rational, usefulness
  • Supervised vs. unsupervised learning
  • Regression vs. classification problems
  • Inference vs. prediction
  • Sampling vs. specification error
  • Goodness-of-fit measures
  • Measuring the quality of fit: in-sample vs. out-of-sample prediction power
  • The bias-variance trade-off and the Mean Square Error (MSE) minimization
  • Training vs. test mean square error
  • The information criteria approach

Session 2 - Model Selection & Elastic Net

  • Model selection as a correct specification procedure
  • The Elastic Net regression in EViews

Day 2

Session 1 - Ridge Regression in EViews

  • Improving on the forecasting performance of the OLS estimator

Session 2 - Lasso Models in EViews
  • How to avoid model misspecification and over fitting while extracting all the relevant information
  • How to set the lasso penalty parameter and interpreting the results
  • Post estimation diagnostic checks

Session 3 - Q&A session

Prerequisites

  • A basic knowledge of linear regression is helpful but not necessary.
  • An introductory level of EViews is helpful but not required.

Terms & Conditions

  • Cost includes course materials.
  • Delegates are provided with temporary licences for the software(s) used in the course and will be instructed to download and install the software prior to the start of the course.
  • Payment of course fees required prior to the course start date.
  • Registration closes 1-calendar days prior to the start of the course.
  • Cancellations
    • 100% fee returned for cancellations made over 28-calendar days prior to start of the course.
    • 50% fee returned for cancellations made 14-calendar days prior to the start of the course.
    • No fee returned for cancellations made less than 14-calendar days prior to the start of the course.

The number of delegates is restricted. Please register early to guarantee your place.

  •  CommercialAcademicStudent
    16 - 17 October 2020 (16/10/2020 - 17/10/2020)

All prices exclude VAT or local taxes where applicable.

* Required Fields

£0

Select your currency

Post your comment

Timberlake Consultants