Robust Estimation of Real Exchange Rate Process Half-life

Michele Bergamelli

Cass Business School

15th OxMetrics Users' Conference

London, 4-5 September 2014

Background

► The real exchange rate (in logs) is defined as

$$q_t \equiv s_t - \bar{p}_t^h + \bar{p}_t^f$$

with s_t denoting the spot exchange rate, \bar{p}_t^h the domestic price index and \bar{p}_t^f the foreign price index.

Background

► The real exchange rate (in logs) is defined as

 $q_t \equiv s_t - \bar{p}_t^h + \bar{p}_t^f$

with s_t denoting the spot exchange rate, \bar{p}_t^h the domestic price index and \bar{p}_t^f the foreign price index.

► If PPP holds exactly q_t should equate 0 for all t though deviations due to sticky prices are theoretically postulated (Rogoff, 1996).

Background

► The real exchange rate (in logs) is defined as

$$q_t \equiv s_t - \bar{p}_t^h + \bar{p}_t^f$$

with s_t denoting the spot exchange rate, \bar{p}_t^h the domestic price index and \bar{p}_t^f the foreign price index.

- ► If PPP holds exactly q_t should equate 0 for all t though deviations due to sticky prices are theoretically postulated (Rogoff, 1996).
- The measure adopted in the literature to quantify the persistence of these deviations is the **half-life** of {q_t} (Mark, 2001; Rossi, 2005) defined as the smallest h such that

$$\psi(h) = \frac{1}{2} \mid \psi(0) = 1$$

with $\psi(t)$, $t \ge 0$ denoting the IRF of $\{q_t\}$.

► According to theory, half-lives should be in the range of 1-2 years, yet empirical estimates imply much larger persistence ⇒ PPP puzzle.

- ► According to theory, half-lives should be in the range of 1-2 years, yet empirical estimates imply much larger persistence ⇒ PPP puzzle.
- Half-lives estimates depend on:

- ► According to theory, half-lives should be in the range of 1-2 years, yet empirical estimates imply much larger persistence ⇒ PPP puzzle.
- Half-lives estimates depend on:
 - 1. Statistical model used for $\{q_t\}$ (AR, ARMA, ARFIMA, TAR, ...).

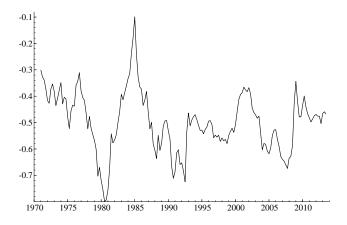
- ► According to theory, half-lives should be in the range of 1-2 years, yet empirical estimates imply much larger persistence ⇒ PPP puzzle.
- Half-lives estimates depend on:
 - 1. Statistical model used for $\{q_t\}$ (AR, ARMA, ARFIMA, TAR, ...).
 - 2. Correct inference of the model parameters.

- ► According to theory, half-lives should be in the range of 1-2 years, yet empirical estimates imply much larger persistence ⇒ PPP puzzle.
- Half-lives estimates depend on:
 - 1. Statistical model used for $\{q_t\}$ (AR, ARMA, ARFIMA, TAR, ...).
 - 2. Correct inference of the model parameters.
- In the present paper, we reconsider the extent of the PPP puzzle using outliers robust inference for ARMA processes.

- ► According to theory, half-lives should be in the range of 1-2 years, yet empirical estimates imply much larger persistence ⇒ PPP puzzle.
- Half-lives estimates depend on:
 - 1. Statistical model used for $\{q_t\}$ (AR, ARMA, ARFIMA, TAR, ...).
 - 2. Correct inference of the model parameters.
- In the present paper, we reconsider the extent of the PPP puzzle using outliers robust inference for ARMA processes.
- Unaccounted outliers distort the half-life estimates since they alter the autocorrelation structure of the observed time-series (Tsay, 1986) and hence the IRF.

Motivation (cont'd)

Figure: USD/GBP Real Exchange Rate.



This paper

We introduce a modelling framework for the real exchange rate that allows for **outlying observations**.

This paper

- We introduce a modelling framework for the real exchange rate that allows for **outlying observations**.
- We consider a Dummy Saturation type procedure to detect and model the outliers observations; we check the procedure to deliver the correct retention rates of the dummies.

This paper

- We introduce a modelling framework for the real exchange rate that allows for **outlying observations**.
- We consider a Dummy Saturation type procedure to detect and model the outliers observations; we check the procedure to deliver the correct retention rates of the dummies.
- We test the PPP for a group of countries by estimating the half-life of the real exchange rates with and without outliers detection.

• Let the process followed by $\{q_t\}$ be described by

$$q_t = q_0 + \sum_{i=1}^k \delta_i V_i(L) \mathbf{1}(t = T_i) + v_t$$

$$\phi(L)v_t = \theta(L)\varepsilon_t \qquad t = 1, \dots, T$$
(2)

where

ヘロト ヘロト ヘヨト ヘヨト

э

6/22

Real Exchange Rate Model

• Let the process followed by $\{q_t\}$ be described by

$$q_t = q_0 + \sum_{i=1}^k \delta_i V_i(L) \mathbf{1}(t = T_i) + v_t$$

$$\phi(L)v_t = \theta(L)\varepsilon_t \qquad t = 1, \dots, T$$
(2)

where

k denotes the number of outlying events;

イロン イボン イヨン 一日

6/22

Real Exchange Rate Model

• Let the process followed by $\{q_t\}$ be described by

$$q_t = q_0 + \sum_{i=1}^k \delta_i V_i(L) \mathbf{1}(t = T_i) + v_t$$

$$\phi(L)v_t = \theta(L)\varepsilon_t \qquad t = 1, \dots, T$$
(2)

where

- k denotes the number of outlying events;
- δ_i is the outlier or level shift size;

• Let the process followed by $\{q_t\}$ be described by

$$q_t = q_0 + \sum_{i=1}^k \delta_i V_i(L) \mathbf{1}(t = T_i) + v_t$$

$$\phi(L)v_t = \theta(L)\varepsilon_t \qquad t = 1, \dots, T$$
(2)

where

- k denotes the number of outlying events;
- δ_i is the outlier or level shift size;
- $V_i(L)$ (with L denoting the lag operator) defines the outlier type;

4 日 ト 4 回 ト 4 三 ト 4 三 ト 5 9 0 0 6(22)

• Let the process followed by $\{q_t\}$ be described by

$$q_t = q_0 + \sum_{i=1}^k \delta_i V_i(L) \mathbf{1}(t = T_i) + v_t$$

$$\phi(L)v_t = \theta(L)\varepsilon_t \qquad t = 1, \dots, T$$
(2)

where

- k denotes the number of outlying events;
- δ_i is the outlier or level shift size;
- $V_i(L)$ (with L denoting the lag operator) defines the outlier type;
- ► 1(t = T_i) is an impulse indicator assuming value 1 for t = T_i and 0 otherwise;

• Let the process followed by $\{q_t\}$ be described by

$$q_t = q_0 + \sum_{i=1}^k \delta_i V_i(L) \mathbf{1}(t = T_i) + v_t$$
(1)

$$\phi(L)v_t = \theta(L)\varepsilon_t$$
 $t = 1, \dots, T$ (2)

where

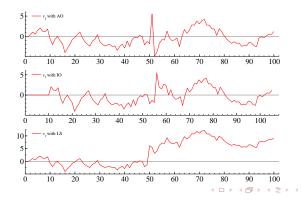
- k denotes the number of outlying events;
- δ_i is the outlier or level shift size;
- $V_i(L)$ (with L denoting the lag operator) defines the outlier type;
- ► 1(t = T_i) is an impulse indicator assuming value 1 for t = T_i and 0 otherwise;
- $\phi(L) = 1 \phi_1 L \dots \phi_p L^p$ and $\theta(L) = 1 \theta_1 L \dots \theta_q L^q$ are lag polynomials with roots outside the unit circle, and $\varepsilon_t \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_{\varepsilon}^2)$.

Real Exchange Rate Model (cont'd)

Three specifications of V_i(L) are particularly relevant to our analysis:

 $V_i(L) = 1$ Additiv $V_i(L) = \phi^{-1}(L)\theta(L)$ Innovat $V_i(L) = (1-L)^{-1}$ Level S

Additive Outlier (AO) Innovative Outlier (IO) Level Shift (LS) $((1-L)^{-1}\mathbf{1}(t=T_i) = \mathbf{1}(t \ge T_i))$.



7/22

▶ It is convenient to rewrite (1)-(2) in matrix notation, to give

 $\mathbf{q} = \mathbf{W}\boldsymbol{\delta} + \mathbf{v} \qquad \mathbf{v} = \phi^{-1}(L)\theta(L)\boldsymbol{\varepsilon}.$

where **W** is a matrix of size $(1 + k^A + k^L + k^I) \times T$ mostly made up of 0-1 entries.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < 0 < 0</p>
8/22

▶ It is convenient to rewrite (1)-(2) in matrix notation, to give

 $\mathbf{q} = \mathbf{W}\boldsymbol{\delta} + \mathbf{v} \qquad \mathbf{v} = \phi^{-1}(L)\theta(L)\boldsymbol{\varepsilon}.$

where **W** is a matrix of size $(1 + k^A + k^L + k^I) \times T$ mostly made up of 0-1 entries.

We are thus in the framework of a regression with ARMA errors and under the normality assumption we have

 $\mathbf{v} \sim \mathcal{N}_T(\mathbf{0}, \sigma_{\varepsilon}^2 \mathbf{\Omega}).$

▶ It is convenient to rewrite (1)-(2) in matrix notation, to give

 $\mathbf{q} = \mathbf{W}\boldsymbol{\delta} + \mathbf{v} \qquad \mathbf{v} = \phi^{-1}(L)\theta(L)\boldsymbol{\varepsilon}.$

where **W** is a matrix of size $(1 + k^A + k^L + k^I) \times T$ mostly made up of 0-1 entries.

We are thus in the framework of a regression with ARMA errors and under the normality assumption we have

 $\mathbf{v} \sim \mathcal{N}_T(\mathbf{0}, \sigma_{\varepsilon}^2 \mathbf{\Omega}).$

 Estimation of the unknowns (regression coefficients and time series parameters) can be obtained maximising the following likelihood

$$\ell(\boldsymbol{\delta},\boldsymbol{\phi},\boldsymbol{\theta},\sigma_{\varepsilon}^2) = -\frac{T}{2} \mathsf{log}(2\pi) - \frac{T}{2} \mathsf{log}\sigma_{\varepsilon}^2 - \frac{1}{2} \mathsf{log}|\boldsymbol{\Omega}| - \frac{1}{2\sigma_{\varepsilon}^2} (\mathbf{q} - \mathbf{W}\boldsymbol{\delta})^\top \boldsymbol{\Omega}^{-1} (\mathbf{q} - \mathbf{W}\boldsymbol{\delta}).$$

It is convenient to rewrite (1)-(2) in matrix notation, to give

 $\mathbf{q} = \mathbf{W}\boldsymbol{\delta} + \mathbf{v} \qquad \mathbf{v} = \phi^{-1}(L)\theta(L)\boldsymbol{\varepsilon}.$

where **W** is a matrix of size $(1 + k^A + k^L + k^I) \times T$ mostly made up of 0-1 entries.

We are thus in the framework of a regression with ARMA errors and under the normality assumption we have

 $\mathbf{v} \sim \mathcal{N}_T(\mathbf{0}, \sigma_{\varepsilon}^2 \mathbf{\Omega}).$

 Estimation of the unknowns (regression coefficients and time series parameters) can be obtained maximising the following likelihood

$$\ell(\boldsymbol{\delta},\boldsymbol{\phi},\boldsymbol{\theta},\sigma_{\varepsilon}^2) = -\frac{T}{2} \mathrm{log}(2\pi) - \frac{T}{2} \mathrm{log}\sigma_{\varepsilon}^2 - \frac{1}{2} \mathrm{log}|\boldsymbol{\Omega}| - \frac{1}{2\sigma_{\varepsilon}^2} (\mathbf{q} - \mathbf{W}\boldsymbol{\delta})^\top \boldsymbol{\Omega}^{-1} (\mathbf{q} - \mathbf{W}\boldsymbol{\delta}).$$

 Problem: the matrix of regressors W is not known. This amounts to the problem of selecting the outlying observations.

8/22

9/22

Outliers Detection Approach

We consider a ML procedure built around the Dummy Saturation principle (Hendry, 1999; Hendry et al., 2008; Johansen and Nielsen, 2009).

Outliers Detection Approach

- We consider a ML procedure built around the Dummy Saturation principle (Hendry, 1999; Hendry et al., 2008; Johansen and Nielsen, 2009).
- ► The procedure searches for outliers in {*q_t*} by saturating in turn with AOs, IOs and LSs.

Outliers Detection Approach

- We consider a ML procedure built around the Dummy Saturation principle (Hendry, 1999; Hendry et al., 2008; Johansen and Nielsen, 2009).
- ► The procedure searches for outliers in {q_t} by saturating in turn with AOs, IOs and LSs.

Steps

1. Initial ARMA order: select using AIC the ARMA order under the null of no outliers, i.e. find the model

 $\phi(L)(q_t - q_0) = \theta(L)\varepsilon_t,$

and denote the corresponding order with (\tilde{p}, \tilde{q}) .

 Search for outliers: Look sequentially for AOs, IOs and LSs using a significance level α and keep track of the selected outliers.

イロト イポト イヨト イヨト

- Search for outliers: Look sequentially for AOs, IOs and LSs using a significance level α and keep track of the selected outliers.
 - 2.1 Saturate the model determined at Stage 1 with **AO**s.

- Search for outliers: Look sequentially for AOs, IOs and LSs using a significance level α and keep track of the selected outliers.
 - 2.1 Saturate the model determined at Stage 1 with AOs.
 - (a) Add the first half of AOs, say $x_{j,t}$, $j = 1, ..., \lfloor T/2 \rfloor$, and estimate by ML the following regression

$$q_t = q_0 + \sum_{j=1}^{\lfloor T/2 \rfloor} \delta_j^A x_{j,t} + \phi^{-1}(L)\theta(L)\varepsilon_t.$$
 (3)

- Search for outliers: Look sequentially for AOs, IOs and LSs using a significance level α and keep track of the selected outliers.
 - 2.1 Saturate the model determined at Stage 1 with AOs.
 - (a) Add the first half of AOs, say $x_{j,t}$, $j = 1, ..., \lfloor T/2 \rfloor$, and estimate by ML the following regression

$$q_t = q_0 + \sum_{j=1}^{\lfloor T/2 \rfloor} \delta_j^A x_{j,t} + \phi^{-1}(L)\theta(L)\varepsilon_t.$$
(3)

(b) Store all x_j such that |t_{δj}^A| > c_{α/2}. Denote the matrix of retained AOs with X₍₁₎.

- Search for outliers: Look sequentially for AOs, IOs and LSs using a significance level α and keep track of the selected outliers.
 - 2.1 Saturate the model determined at Stage 1 with AOs.
 - (a) Add the first half of AOs, say $x_{j,t}$, $j = 1, ..., \lfloor T/2 \rfloor$, and estimate by ML the following regression

$$q_t = q_0 + \sum_{j=1}^{\lfloor T/2 \rfloor} \delta_j^A x_{j,t} + \phi^{-1}(L)\theta(L)\varepsilon_t.$$
 (3)

- (b) Store all x_j such that |t_{δj}^A| > c_{α/2}. Denote the matrix of retained AOs with X₍₁₎.
- (c) Repeat by saturating with the second half of AOs, i.e. estimating (3) with $x_{j,t}, j = \lfloor T/2 \rfloor + 1, \ldots, T$, and again define $\ddot{\mathbf{X}}_{(2)}$ the matrix of the outliers for which $|\mathbf{t}_{\delta_1^A}| > c_{\alpha/2}$.

- Search for outliers: Look sequentially for AOs, IOs and LSs using a significance level α and keep track of the selected outliers.
 - 2.1 Saturate the model determined at Stage 1 with AOs.
 - (a) Add the first half of AOs, say $x_{j,t}$, $j = 1, ..., \lfloor T/2 \rfloor$, and estimate by ML the following regression

$$q_t = q_0 + \sum_{j=1}^{\lfloor T/2 \rfloor} \delta_j^A x_{j,t} + \phi^{-1}(L)\theta(L)\varepsilon_t.$$
 (3)

- (b) Store all x_j such that |t_{δj}^A| > c_{α/2}. Denote the matrix of retained AOs with X₍₁₎.
- (c) Repeat by saturating with the second half of AOs, i.e. estimating (3) with $x_{j,t}, j = \lfloor T/2 \rfloor + 1, \ldots, T$, and again define $\ddot{\mathbf{X}}_{(2)}$ the matrix of the outliers for which $|\mathbf{t}_{\delta_{1}^{A}}| > c_{\alpha/2}$.
- (d) Estimate (3) including only the AOs selected at the two previous stages and denote X the matrix with the statistically significant outliers.

- Search for outliers: Look sequentially for AOs, IOs and LSs using a significance level α and keep track of the selected outliers.
 - 2.1 Saturate the model determined at Stage 1 with AOs.
 - (a) Add the first half of AOs, say $x_{j,t}$, $j = 1, ..., \lfloor T/2 \rfloor$, and estimate by ML the following regression

$$q_t = q_0 + \sum_{j=1}^{\lfloor T/2 \rfloor} \delta_j^A x_{j,t} + \phi^{-1}(L)\theta(L)\varepsilon_t.$$
 (3)

- (b) Store all x_j such that |t_{δj}^A| > c_{α/2}. Denote the matrix of retained AOs with X₍₁₎.
- (c) Repeat by saturating with the second half of AOs, i.e. estimating (3) with $x_{j,t}, j = \lfloor T/2 \rfloor + 1, \ldots, T$, and again define $\ddot{\mathbf{X}}_{(2)}$ the matrix of the outliers for which $|\mathbf{t}_{\delta A}| > c_{\alpha/2}$.
- (d) Estimate (3) including only the AOs selected at the two previous stages and denote $\ddot{\mathbf{X}}$ the matrix with the statistically significant outliers.
- 2.2 Repeat steps (a)-(d) for LSs and then IOs in order to get $\ddot{\mathbf{Y}}$ and $\ddot{\mathbf{Z}}$, the matrix containing the retained LSs and IOs respectively.

3. Final model selection: estimate by ML the following regression with ARMA errors

$$q_t = q_0 + \ddot{\mathbf{x}}_t^{\top} \boldsymbol{\delta}^A + \ddot{\mathbf{y}}_t^{\top} \boldsymbol{\delta}^L + \phi^{-1}(L)\theta(L)(\varepsilon_t + \ddot{\mathbf{z}}_t^{\top} \boldsymbol{\delta}^I)$$
(4)

and drop the not significant outliers. Estimation of (4) is iterated until the included outliers are all statistically significant and the ARMA order is modified accordingly.

Outliers Detection Approach (cont'd)

We check by simulation that the procedure delivers the correct retention rates of the dummies:

T = 100				T = 200			T = 300		
AO	IO	LS	AO	IO	LS	AO	IO	LS	
$\alpha = 0.01$									
				n = 2					
1.242	6.472	0.901	1.215	6.488	0.983	1.092	6.651	0.989	
n = 5									
1.189	2.125	0.989	1.079	2.088	0.973	1.062	2.105	1.000	
				n = 10					
1.116	1.530	0.993	1.096	1.493	0.972	1.045	1.479	1.004	
				n = 20					
1.116	1.462	1.041	1.054	1.273	1.005	1.040	1.233	1.002	
				$\alpha = 0.05$					
				$\alpha = 0.05$ n = 2					
				n = 2					

				$\alpha = 0.05$						
				n = 2						
5.260	15.880	4.655	5.223	16.085	4.818	5.103	16.265	4.899		
				n = 5						
5.245	7.756	4.567	5.096	7.822	4.951	5.092	7.875	4.981		
	n = 10									
5.206	6.346	4.894	5.188	6.235	4.965	5.038	6.271	5.010		
				n = 20						
5.332	6.140	4.995	5.096	5.680	4.994	5.132	5.669	5.022		

12/22

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Robust Half-life Computation

Robust half-life estimates are obtained from the following "cleaned" series

$$\tilde{q}_t \equiv q_t - q_0 - \mathbf{x}_t^{\mathsf{T}} \boldsymbol{\delta}^A - \mathbf{y}_t^{\mathsf{T}} \boldsymbol{\delta}^L - \phi(L)^{-1} \theta(L) \mathbf{z}_t^{\mathsf{T}} \boldsymbol{\delta}^I = \phi^{-1}(L) \theta(L) \varepsilon_t.$$

Robust Half-life Computation

Robust half-life estimates are obtained from the following "cleaned" series

$$\tilde{q}_t \equiv q_t - q_0 - \mathbf{x}_t^{\mathsf{T}} \boldsymbol{\delta}^A - \mathbf{y}_t^{\mathsf{T}} \boldsymbol{\delta}^L - \phi(L)^{-1} \theta(L) \mathbf{z}_t^{\mathsf{T}} \boldsymbol{\delta}^I = \phi^{-1}(L) \theta(L) \varepsilon_t.$$

► Let $\psi(L) = \phi^{-1}(L)\theta(L)$ to give $\tilde{q}_t = \sum_{j=0}^{+\infty} \psi_j \varepsilon_{t-j}$, with $\sum_{j=0}^{+\infty} \psi_j^2 < \infty$ (under the assumption that the roots of $\phi(L)$ all lie outside the unit circle), such that $\lim_{j\to\infty} \psi_j = 0$.

Robust Half-life Computation

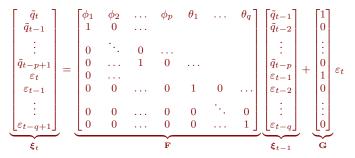
Robust half-life estimates are obtained from the following "cleaned" series

$$\tilde{q}_t \equiv q_t - q_0 - \mathbf{x}_t^{\mathsf{T}} \boldsymbol{\delta}^A - \mathbf{y}_t^{\mathsf{T}} \boldsymbol{\delta}^L - \phi(L)^{-1} \theta(L) \mathbf{z}_t^{\mathsf{T}} \boldsymbol{\delta}^I = \phi^{-1}(L) \theta(L) \varepsilon_t.$$

- ► Let $\psi(L) = \phi^{-1}(L)\theta(L)$ to give $\tilde{q}_t = \sum_{j=0}^{+\infty} \psi_j \varepsilon_{t-j}$, with $\sum_{j=0}^{+\infty} \psi_j^2 < \infty$ (under the assumption that the roots of $\phi(L)$ all lie outside the unit circle), such that $\lim_{j\to\infty} \psi_j = 0$.
- Let ψ(j) = ψ_j, j = 1, 2, ..., T and ψ(0) = 1 be the IRF, we are interested in finding the first instant h such that ψ(h) = 0.5.

Robust Half-life Computation (cont'd)

• Assuming $\{\tilde{q}_t\}_{t=1}^T \sim ARMA(p,q)$,



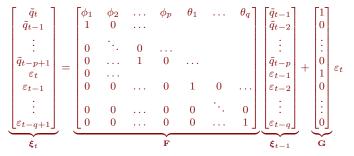
The IRF can be obtained as

 $\psi(j) = \mathbf{e}(\mathbf{F}^j \mathbf{G})$

where $\mathbf{e} = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^{\top}$ is a selection vector.

Robust Half-life Computation (cont'd)

• Assuming $\{\tilde{q}_t\}_{t=1}^T \sim ARMA(p,q)$,



The IRF can be obtained as

$$\psi(j) = \mathbf{e}(\mathbf{F}^j \mathbf{G})$$

where $\mathbf{e} = \begin{bmatrix} 1 \ 0 \ \dots \ 0 \end{bmatrix}^{\top}$ is a selection vector.

► To find the smallest value h such that e(F^hG) = 0.5 we use interpolating splines.

< □ > < 큔 > < 흔 > < 흔 > 트 - 의 < ⊙ < < 14/22

Empirical Application: Data

We analyse US dollar bilateral exchange rates for a group of developed countries: United Kingdom, Germany, France, Italy, Switzerland, Japan, South Africa, Mexico and the Euro Area (EMU).

イロト 不得 とくき とくき とうき

Empirical Application: Data

- We analyse US dollar bilateral exchange rates for a group of developed countries: United Kingdom, Germany, France, Italy, Switzerland, Japan, South Africa, Mexico and the Euro Area (EMU).
- Real exchange rate for the ith country (q_{i,t}) is computed from the nominal exchange rate (s_{i,t}, currency units for \$1) and the CPIs (p_{i,t} and p_{US,t}) as

$$q_{i,t} = s_{i,t} - p_{i,t} + p_{US,t}$$

Empirical Application: Data

- We analyse US dollar bilateral exchange rates for a group of developed countries: United Kingdom, Germany, France, Italy, Switzerland, Japan, South Africa, Mexico and the Euro Area (EMU).
- ► Real exchange rate for the ith country (q_{i,t}) is computed from the nominal exchange rate (s_{i,t}, currency units for \$1) and the CPIs (p_{i,t} and p_{US,t}) as

$$q_{i,t} = s_{i,t} - p_{i,t} + p_{US,t}$$

 Data are obtained from the FRED database at a quarterly frequency over the period 1971:1-2013:3 (max 171 obs, min 59 obs).

Empirical Application: Half-life Computation Without Outliers Detection

	\hat{h}	\hat{c}_{low}	\hat{c}_{upp}	(<i>p</i> , <i>q</i>)	AIC	J-B
UK	1.78	0.85	2.26	4,3	-584.61	[0.0050]**
Germany	1.86	1.11	4.82	2,2	-400.49	[0.3885]
France	1.82	1.14	4.27	2,2	-419.27	[0.0456]*
Italy	1.87	1.13	4.74	2,2	-414.70	[0.0306]*
Switzerland	7.05	1.89	12.12	1,1	-541.48	[0.9039]
South Africa	5.27	1.40	7.62	2,1	-471.59	[0.0001]**
Japan	6.60	2.31	11.02	5,1	-545.81	[0.0503]
Mexico	0.99	0.31	1.13	3,3	-211.69	[0.0000]**
Euro Area	3.30	0.67	4.38	1,1	-208.00	[0.2370]

Notes: \hat{h} denotes the annualised half-life estimate, \hat{c}_{low} and \hat{c}_{upp} are the lower and upper endpoint of the bootstrapped confidence interval, (p, q) denotes the ARMA order, *AIC* the Akaike Information Criterion and J-B the *p*-value of the Jarque-Bera test with '**' and '*' denoting rejection of the null of Normality at 1% and 5% significance level respectively.

Empirical Application: Half-life Computation With Outliers Detection

	\hat{h}	\hat{c}_{low}	\hat{c}_{upp}	(<i>p</i> , <i>q</i>)	AOs	lOs	LSs	AIC	J-B
UK	1.25	0.86	1.93	4,3	1981(3) 1985(1) 1988(2)	2008(4)	1990(3) 1992(4)	-658.67	[0.4640]
Germany	1.89	1.27	3.72	2,2			1974(3) 1975(3) 1984(3) 1988(3)	-412.26	[0.7323]
France	1.85	1.24	3.88	2,2	1985(1)	1991(2)		-425.33	[0.1589]
Italy	1.66	1.03	4.45	2,2	2000(4)	1976(1) 1984(3) 1992(3)		-425.99	[0.0117]*
Switzerland	2.85	1.15	4.82	1,1	1985(1)	1971(1) 1978(1)		-558.30	[0.7162]
South Africa	1.95	0.96	2.42	3,2		2001(4) 2008(4)	1975(4) 1998(3)	-516.03	[0.0000]**
Japan	3.59	1.85	5.07	5,1	1979(4) 1995(2)	1971(1) 1998(4) 2008(4)	1978(3) 2013(1)	-593.94	[0.8416]
Mexico	2.05	0.38	3.26	2,3		1995(1) 2008(4)	1995(2)	-306.87	[0.3196]
Euro Area	1.31	0.51	2.19	1,1	2000(4)		2003(4) 2004(1)	-218.31	[0.2711]

17/22

For "problematic" countries, modelling outliers seems to drastically reduce the extent of the PPP puzzle.

- For "problematic" countries, modelling outliers seems to drastically reduce the extent of the PPP puzzle.
- For countries where the puzzle is less evident or absent, half-life estimates are not affected.

- For "problematic" countries, modelling outliers seems to drastically reduce the extent of the PPP puzzle.
- For countries where the puzzle is less evident or absent, half-life estimates are not affected.
- Benefits of accounting for outliers are in any case evident in tighter confidence intervals and restored normality.

- For "problematic" countries, modelling outliers seems to drastically reduce the extent of the PPP puzzle.
- For countries where the puzzle is less evident or absent, half-life estimates are not affected.
- Benefits of accounting for outliers are in any case evident in tighter confidence intervals and restored normality.
- Four outliers retained on average. The most recurring is the IO in the fourth quarter of 2008.

Testing for Non-linear Effects

▶ Part of the literature models {*qt*} using **non-linear models** (TAR, SETAR, ...) following the "bands of inaction" argument raised by Taylor (2001).

イロン イボン イモン イモン 三日

19/22

Testing for Non-linear Effects

- ▶ Part of the literature models {*q_t*} using **non-linear models** (TAR, SETAR, ...) following the "bands of inaction" argument raised by Taylor (2001).
- Testing for non-linearities can be seen as an empirical investigation of this phenomenon.

Testing for Non-linear Effects

- ▶ Part of the literature models {*qt*} using **non-linear models** (TAR, SETAR, ...) following the "bands of inaction" argument raised by Taylor (2001).
- Testing for non-linearities can be seen as an empirical investigation of this phenomenon.
- We test with and without outliers removal to see whether non-linearities (if any) can be due to unaccounted outliers or, conversely, outliers inclusion is masking non-linearities.

Testing for Non-linear Effects

- ▶ Part of the literature models {*q_t*} using **non-linear models** (TAR, SETAR, ...) following the "bands of inaction" argument raised by Taylor (2001).
- Testing for non-linearities can be seen as an empirical investigation of this phenomenon.
- We test with and without outliers removal to see whether non-linearities (if any) can be due to unaccounted outliers or, conversely, outliers inclusion is masking non-linearities.
- ► We employ the **BDS statistic** (Brock et al., 1996) which is based on the concept of **correlation integral** and aims at measuring the frequency with which temporal patterns repeat over time.

Testing for Non-linear Effects (cont'd)

$\eta = 0.5$	2	3	4	5
UK	0.003**	0.005**	0.002**	0.000**
UK	0.484	0.313	0.313	0.004**
Cormony	0.116	0.025*	0.960	0.097
Germany	0.002**	0.285	0.689	0.136
France	0.447	0.992	0.603	0.711
France	0.116	0.313	0.741	0.857
Italy	0.001**	0.000**	0.000**	0.000**
Italy	0.037*	0.006**	0.007**	0.000**
Switzerland	0.749	0.535	0.126	0.022*
Switzenanu	0.772	0.294	0.562	0.352
South Africa	0.003**	0.001**	0.000**	0.000**
South Airica	0.001**	0.000**	0.000**	0.000**
lanan	0.689	0.298	0.230	0.478
Japan	0.757	0.407	0.711	0.332
Mexico	0.000**	0.002**	0.052	0.099
IVIEXICO	0.000**	0.004**	0.067	0.072
	0.215	0.002**	0.000**	0.000**
EMU	0.555	0.522	0.119	0.555

Notes: ** and * denote presence of non-linear effects at 1% and 5% significance level.

20/22

 $\exists \rightarrow$

We conjectured that existing half-life estimates are influenced by outlying observations.

- We conjectured that existing half-life estimates are influenced by outlying observations.
- We allowed the real exchange rate process to follow an ARMA dynamics contaminated by AOs, IOs and LSs.

- We conjectured that existing half-life estimates are influenced by outlying observations.
- We allowed the real exchange rate process to follow an ARMA dynamics contaminated by AOs, IOs and LSs.
- We proposed a sequential Dummy Saturation approach combined with ML estimation to detect the outlying observations.

- We conjectured that existing half-life estimates are influenced by outlying observations.
- We allowed the real exchange rate process to follow an ARMA dynamics contaminated by AOs, IOs and LSs.
- We proposed a sequential Dummy Saturation approach combined with ML estimation to detect the outlying observations.
- An empirical application involving US dollar exchange rates showed that

- We conjectured that existing half-life estimates are influenced by outlying observations.
- We allowed the real exchange rate process to follow an ARMA dynamics contaminated by AOs, IOs and LSs.
- We proposed a sequential Dummy Saturation approach combined with ML estimation to detect the outlying observations.
- An empirical application involving US dollar exchange rates showed that
 - 1. When the PPP puzzle is rather pronounced, including outliers helps to reduce the half-life by a factor of 2 or 3.

- We conjectured that existing half-life estimates are influenced by outlying observations.
- We allowed the real exchange rate process to follow an ARMA dynamics contaminated by AOs, IOs and LSs.
- We proposed a sequential Dummy Saturation approach combined with ML estimation to detect the outlying observations.
- An empirical application involving US dollar exchange rates showed that
 - 1. When the PPP puzzle is rather pronounced, including outliers helps to reduce the half-life by a factor of 2 or 3.
 - 2. In any case, robust estimation allows to obtain **tighter CIs** and **to restore normality**.

- We conjectured that existing half-life estimates are influenced by outlying observations.
- We allowed the real exchange rate process to follow an ARMA dynamics contaminated by AOs, IOs and LSs.
- We proposed a sequential Dummy Saturation approach combined with ML estimation to detect the outlying observations.
- An empirical application involving US dollar exchange rates showed that
 - 1. When the PPP puzzle is rather pronounced, including outliers helps to reduce the half-life by a factor of 2 or 3.
 - 2. In any case, robust estimation allows to obtain **tighter CIs** and **to restore normality**.
 - 3. Presence of non-linear effects is mixed without modelling outliers and it becomes even less evident when accounting for outliers.

Bibliography

- Brock, W., W. Dechert, J. Scheinkman, and B. Le Baron (1996). A Test of Independence Based on the Correlation Dimension. Econometrics Reviews 15, 197–235.
- Hendry, D., S. Johansen, and C. Santos (2008). Automatic Selection of Indicators in a Fully Saturated Regression. Computational Statistics 23, 317–335 and Erratum 337–339.
- Hendry, D. F. (1999). An Econometric Analysis of US Food Expenditure, 1931-1989. In J. R. Magnus and M. S. Morgan (Eds.), Methodology and Tacit Knowledge: Two Experiments in Econometrics, Chapter 17, pp. 341–361. Chicester: John Wiley & Sons.
- Johansen, S. and B. Nielsen (2009). An Analisys of the Indicator Saturation Estimator as a Robust Regression Estimator. In J. Castle and N. Shephard (Eds.), The Methodology and Practice of Econometrics, Chapter 1, pp. 1–36. Oxford: Oxford University Press.
- Mark, N. C. (2001). International Macroeconomics and Finance: Theory and Empirical Methods. Blackwell.
- Rogoff, K. (1996). The Purchasing Power Parity Puzzle. Journal of Economic Literature 34, 647-668.
- Rossi, B. (2005). Confidence Intervals for Half-Life Deviations from Purchasing Power Parity. Journal of Business & Economic Statistics 23, 432–442.
- Taylor, A. M. (2001). Potential Pitfalls for Purchasing Power Parity Puzzle? Sampling and Specification Biases in Mean-Reversion Tests of the Law of One Price. *Econometrica* 69, 473–498.
- Tsay, R. S. (1986). Time Series Model Specification in the Presence of Outliers. Journal of the American Statistical Association 81, 132–141.