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Background
I The real exchange rate (in logs) is defined as

qt ≡ st − p̄ht + p̄ft

with st denoting the spot exchange rate, p̄ht the domestic price
index and p̄ft the foreign price index.

I If PPP holds exactly qt should equate 0 for all t though deviations
due to sticky prices are theoretically postulated (Rogoff, 1996).

I The measure adopted in the literature to quantify the persistence
of these deviations is the half-life of {qt} (Mark, 2001; Rossi,
2005) defined as the smallest h such that

ψ(h) =
1

2
| ψ(0) = 1

with ψ(t), t ≥ 0 denoting the IRF of {qt}.
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Motivation

I According to theory, half-lives should be in the range of 1-2
years, yet empirical estimates imply much larger persistence⇒
PPP puzzle.

I Half-lives estimates depend on:

1. Statistical model used for {qt} (AR, ARMA, ARFIMA, TAR, . . . ).
2. Correct inference of the model parameters.

I In the present paper, we reconsider the extent of the PPP puzzle
using outliers robust inference for ARMA processes.

I Unaccounted outliers distort the half-life estimates since they
alter the autocorrelation structure of the observed time-series
(Tsay, 1986) and hence the IRF.
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Motivation (cont’d)

Figure: USD/GBP Real Exchange Rate.
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This paper

I We introduce a modelling framework for the real exchange rate
that allows for outlying observations.

I We consider a Dummy Saturation type procedure to detect and
model the outliers observations; we check the procedure to
deliver the correct retention rates of the dummies.

I We test the PPP for a group of countries by estimating the
half-life of the real exchange rates with and without outliers
detection.
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Real Exchange Rate Model

I Let the process followed by {qt} be described by

qt = q0 +

k∑
i=1

δiVi(L)1(t = Ti) + vt (1)

φ(L)vt = θ(L)εt t = 1, . . . , T (2)

where

I k denotes the number of outlying events;
I δi is the outlier or level shift size;
I Vi(L) (with L denoting the lag operator) defines the outlier type;
I 1(t = Ti) is an impulse indicator assuming value 1 for t = Ti and 0

otherwise;
I φ(L) = 1− φ1L− · · · − φpLp and θ(L) = 1− θ1L− · · · − θqLq are

lag polynomials with roots outside the unit circle, and
εt

iid∼ N (0, σ2
ε).
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Real Exchange Rate Model (cont’d)
I Three specifications of Vi(L) are particularly relevant to our

analysis:

Vi(L) = 1 Additive Outlier (AO)
Vi(L) = φ−1(L)θ(L) Innovative Outlier (IO)
Vi(L) = (1− L)−1 Level Shift (LS) ((1− L)−11(t = Ti) = 1(t ≥ Ti)).

vt with AO 
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Estimation
I It is convenient to rewrite (1)-(2) in matrix notation, to give

q = Wδ + v v = φ−1(L)θ(L)ε.

where W is a matrix of size (1 + kA + kL + kI)× T mostly made
up of 0-1 entries.

I We are thus in the framework of a regression with ARMA
errors and under the normality assumption we have

v ∼ NT (0, σ2
εΩ).

I Estimation of the unknowns (regression coefficients and time
series parameters) can be obtained maximising the following
likelihood

`(δ,φ,θ, σ2
ε) = −

T

2
log(2π)−T

2
logσ2

ε−
1

2
log|Ω|− 1

2σ2
ε

(q−Wδ)>Ω−1(q−Wδ).

I Problem: the matrix of regressors W is not known. This
amounts to the problem of selecting the outlying observations.
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Outliers Detection Approach

I We consider a ML procedure built around the Dummy
Saturation principle (Hendry, 1999; Hendry et al., 2008;
Johansen and Nielsen, 2009).

I The procedure searches for outliers in {qt} by saturating in turn
with AOs, IOs and LSs.

Steps

1. Initial ARMA order: select using AIC the ARMA order under the
null of no outliers, i.e. find the model

φ(L)(qt − q0) = θ(L)εt,

and denote the corresponding order with (p̃, q̃).
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Outliers Detection Approach (cont’d)
2. Search for outliers: Look sequentially for AOs, IOs and LSs

using a significance level α and keep track of the selected
outliers.

2.1 Saturate the model determined at Stage 1 with AOs.

(a) Add the first half of AOs, say xj,t, j = 1, . . . , bT/2c, and estimate by
ML the following regression

qt = q0 +

bT/2c∑
j=1

δAj xj,t + φ−1(L)θ(L)εt. (3)

(b) Store all xj such that |tδ̂Aj | > cα/2. Denote the matrix of retained AOs

with Ẍ(1).
(c) Repeat by saturating with the second half of AOs, i.e. estimating (3)

with xj,t, j = bT/2c+ 1, . . . , T , and again define Ẍ(2) the matrix of
the outliers for which |tδ̂Aj | > cα/2.

(d) Estimate (3) including only the AOs selected at the two previous stages
and denote Ẍ the matrix with the statistically significant outliers.

2.2 Repeat steps (a)-(d) for LSs and then IOs in order to get Ÿ and Z̈,
the matrix containing the retained LSs and IOs respectively.
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2.2 Repeat steps (a)-(d) for LSs and then IOs in order to get Ÿ and Z̈,
the matrix containing the retained LSs and IOs respectively.
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Outliers Detection Approach (cont’d)

3. Final model selection: estimate by ML the following regression
with ARMA errors

qt = q0 + ẍ>t δ
A + ÿ>t δ

L + φ−1(L)θ(L)(εt + z̈>t δ
I) (4)

and drop the not significant outliers. Estimation of (4) is iterated
until the included outliers are all statistically significant and the
ARMA order is modified accordingly.
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Outliers Detection Approach (cont’d)
I We check by simulation that the procedure delivers the correct

retention rates of the dummies:
T = 100 T = 200 T = 300

AO IO LS AO IO LS AO IO LS

α = 0.01

n = 2

1.242 6.472 0.901 1.215 6.488 0.983 1.092 6.651 0.989

n = 5

1.189 2.125 0.989 1.079 2.088 0.973 1.062 2.105 1.000

n = 10

1.116 1.530 0.993 1.096 1.493 0.972 1.045 1.479 1.004

n = 20

1.116 1.462 1.041 1.054 1.273 1.005 1.040 1.233 1.002

α = 0.05

n = 2

5.260 15.880 4.655 5.223 16.085 4.818 5.103 16.265 4.899

n = 5

5.245 7.756 4.567 5.096 7.822 4.951 5.092 7.875 4.981

n = 10

5.206 6.346 4.894 5.188 6.235 4.965 5.038 6.271 5.010

n = 20

5.332 6.140 4.995 5.096 5.680 4.994 5.132 5.669 5.022
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Robust Half-life Computation

I Robust half-life estimates are obtained from the following
“cleaned” series

q̃t ≡ qt − q0 − x>t δ
A − y>t δ

L − φ(L)−1θ(L)z>t δ
I = φ−1(L)θ(L)εt.

I Let ψ(L) = φ−1(L)θ(L) to give q̃t =
∑+∞

j=0 ψjεt−j , with∑+∞
j=0 ψ

2
j <∞ (under the assumption that the roots of φ(L) all lie

outside the unit circle), such that limj→∞ ψj = 0.

I Let ψ(j) = ψj , j = 1, 2, . . . , T and ψ(0) = 1 be the IRF, we are
interested in finding the first instant h such that ψ(h) = 0.5.
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Robust Half-life Computation (cont’d)
I Assuming {q̃t}Tt=1 ∼ ARMA(p, q),

q̃t
q̃t−1

...
q̃t−p+1

εt
εt−1

...
εt−q+1


︸ ︷︷ ︸

ξt

=



φ1 φ2 . . . φp θ1 . . . θq
1 0 . . .

0
. . . 0 . . .

0 . . . 1 0 . . .
0 . . .
0 0 . . . 0 1 0 . . .

0 0 . . . 0 0
. . . 0

0 0 . . . 0 0 . . . 1


︸ ︷︷ ︸

F



q̃t−1

q̃t−2

...
q̃t−p
εt−1

εt−2

...
εt−q


︸ ︷︷ ︸

ξt−1

+



1
0
...
0
1
0
...
0


︸︷︷︸
G

εt

The IRF can be obtained as

ψ(j) = e(FjG)

where e = [1 0 . . . 0]> is a selection vector.

I To find the smallest value h such that e(FhG) = 0.5 we use
interpolating splines.
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Robust Half-life Computation (cont’d)
I Assuming {q̃t}Tt=1 ∼ ARMA(p, q),
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where e = [1 0 . . . 0]> is a selection vector.
I To find the smallest value h such that e(FhG) = 0.5 we use

interpolating splines.
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Empirical Application: Data

I We analyse US dollar bilateral exchange rates for a group of
developed countries: United Kingdom, Germany, France, Italy,
Switzerland, Japan, South Africa, Mexico and the Euro Area
(EMU).

I Real exchange rate for the ith country (qi,t) is computed from the
nominal exchange rate (si,t, currency units for $1) and the CPIs
(pi,t and pUS,t) as

qi,t = si,t − pi,t + pUS,t

I Data are obtained from the FRED database at a quarterly
frequency over the period 1971:1-2013:3 (max 171 obs, min 59
obs).

15 / 22



Introduction Model & Estimation Half-life Computation Empirical Application Conclusions References

Empirical Application: Data

I We analyse US dollar bilateral exchange rates for a group of
developed countries: United Kingdom, Germany, France, Italy,
Switzerland, Japan, South Africa, Mexico and the Euro Area
(EMU).

I Real exchange rate for the ith country (qi,t) is computed from the
nominal exchange rate (si,t, currency units for $1) and the CPIs
(pi,t and pUS,t) as

qi,t = si,t − pi,t + pUS,t

I Data are obtained from the FRED database at a quarterly
frequency over the period 1971:1-2013:3 (max 171 obs, min 59
obs).

15 / 22



Introduction Model & Estimation Half-life Computation Empirical Application Conclusions References

Empirical Application: Data

I We analyse US dollar bilateral exchange rates for a group of
developed countries: United Kingdom, Germany, France, Italy,
Switzerland, Japan, South Africa, Mexico and the Euro Area
(EMU).

I Real exchange rate for the ith country (qi,t) is computed from the
nominal exchange rate (si,t, currency units for $1) and the CPIs
(pi,t and pUS,t) as

qi,t = si,t − pi,t + pUS,t

I Data are obtained from the FRED database at a quarterly
frequency over the period 1971:1-2013:3 (max 171 obs, min 59
obs).

15 / 22



Introduction Model & Estimation Half-life Computation Empirical Application Conclusions References

Empirical Application: Half-life Computation
Without Outliers Detection

ĥ ĉlow ĉupp (p, q) AIC J-B

UK 1.78 0.85 2.26 4,3 -584.61 [0.0050]**
Germany 1.86 1.11 4.82 2,2 -400.49 [0.3885]

France 1.82 1.14 4.27 2,2 -419.27 [0.0456]*
Italy 1.87 1.13 4.74 2,2 -414.70 [0.0306]*

Switzerland 7.05 1.89 12.12 1,1 -541.48 [0.9039]
South Africa 5.27 1.40 7.62 2,1 -471.59 [0.0001]**

Japan 6.60 2.31 11.02 5,1 -545.81 [0.0503]
Mexico 0.99 0.31 1.13 3,3 -211.69 [0.0000]**

Euro Area 3.30 0.67 4.38 1,1 -208.00 [0.2370]

Notes: ĥ denotes the annualised half-life estimate, ĉlow and ĉupp are the lower and upper endpoint
of the bootstrapped confidence interval, (p, q) denotes the ARMA order, AIC the Akaike Information
Criterion and J-B the p-value of the Jarque-Bera test with ‘**’ and ‘*’ denoting rejection of the null of
Normality at 1% and 5% significance level respectively.
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Empirical Application: Half-life Computation With
Outliers Detection

ĥ ĉlow ĉupp (p, q) AOs IOs LSs AIC J-B

UK 1.25 0.86 1.93 4,3
1981(3)
1985(1)
1988(2)

2008(4) 1990(3)
1992(4) -658.67 [0.4640]

Germany 1.89 1.27 3.72 2,2

1974(3)
1975(3)
1984(3)
1988(3)

-412.26 [0.7323]

France 1.85 1.24 3.88 2,2 1985(1) 1991(2) -425.33 [0.1589]

Italy 1.66 1.03 4.45 2,2 2000(4)
1976(1)
1984(3)
1992(3)

-425.99 [0.0117]*

Switzerland 2.85 1.15 4.82 1,1 1985(1) 1971(1)
1978(1) -558.30 [0.7162]

South Africa 1.95 0.96 2.42 3,2 2001(4)
2008(4)

1975(4)
1998(3) -516.03 [0.0000]**

Japan 3.59 1.85 5.07 5,1 1979(4)
1995(2)

1971(1)
1998(4)
2008(4)

1978(3)
2013(1) -593.94 [0.8416]

Mexico 2.05 0.38 3.26 2,3 1995(1)
2008(4) 1995(2) -306.87 [0.3196]

Euro Area 1.31 0.51 2.19 1,1 2000(4) 2003(4)
2004(1) -218.31 [0.2711]
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Empirical Application: Evidence

I For “problematic” countries, modelling outliers seems to
drastically reduce the extent of the PPP puzzle.

I For countries where the puzzle is less evident or absent, half-life
estimates are not affected.

I Benefits of accounting for outliers are in any case evident in
tighter confidence intervals and restored normality.

I Four outliers retained on average. The most recurring is the IO
in the fourth quarter of 2008.
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Testing for Non-linear Effects

I Part of the literature models {qt} using non-linear models (TAR,
SETAR, . . . ) following the “bands of inaction” argument raised by
Taylor (2001).

I Testing for non-linearities can be seen as an empirical
investigation of this phenomenon.

I We test with and without outliers removal to see whether
non-linearities (if any) can be due to unaccounted outliers or,
conversely, outliers inclusion is masking non-linearities.

I We employ the BDS statistic (Brock et al., 1996) which is based
on the concept of correlation integral and aims at measuring
the frequency with which temporal patterns repeat over time.
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Testing for Non-linear Effects (cont’d)
η = 0.5 2 3 4 5

UK 0.003** 0.005** 0.002** 0.000**
0.484 0.313 0.313 0.004**

Germany 0.116 0.025* 0.960 0.097
0.002** 0.285 0.689 0.136

France 0.447 0.992 0.603 0.711
0.116 0.313 0.741 0.857

Italy 0.001** 0.000** 0.000** 0.000**
0.037* 0.006** 0.007** 0.000**

Switzerland 0.749 0.535 0.126 0.022*
0.772 0.294 0.562 0.352

South Africa 0.003** 0.001** 0.000** 0.000**
0.001** 0.000** 0.000** 0.000**

Japan 0.689 0.298 0.230 0.478
0.757 0.407 0.711 0.332

Mexico 0.000** 0.002** 0.052 0.099
0.000** 0.004** 0.067 0.072

EMU 0.215 0.002** 0.000** 0.000**
0.555 0.522 0.119 0.555

Notes: ** and * denote presence of non-linear effects at 1%
and 5% significance level. 20 / 22
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Concluding Remarks

I We conjectured that existing half-life estimates are influenced by
outlying observations.

I We allowed the real exchange rate process to follow an ARMA
dynamics contaminated by AOs, IOs and LSs.

I We proposed a sequential Dummy Saturation approach
combined with ML estimation to detect the outlying observations.

I An empirical application involving US dollar exchange rates
showed that

1. When the PPP puzzle is rather pronounced, including outliers
helps to reduce the half-life by a factor of 2 or 3.

2. In any case, robust estimation allows to obtain tighter CIs and to
restore normality.

3. Presence of non-linear effects is mixed without modelling outliers
and it becomes even less evident when accounting for outliers.
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